Sensitivity of sulfate direct climate forcing to the particle physical state: A global perspective

Jun Wang, Andrew Hoffman, Scot Martin, Daniel Jacob

Present at AEROCENTER/GSFC, Nov. 21, 2006

Sulfate physical state and chemical composition

Neutralization $X = [NH_4]/2[SO_4]$

Solids:

 $AS \qquad (NH_4)_2SO_4 \qquad X = 1$

LET $(NH_4)_3H(SO_4)_2$ X = 0.75

AHS (NH_4) HSO₄ X = 0.5

Aqueous:

SA H_2SO_4 , H_2O X = 0

SO4aq SO_4^{2-} , H^+ , NH_4^+ , H_2O 0 < X < 1

Hysteresis Loop of Sulfate Hygroscopicity

CRH: Crystalline relative humidity

DRH: Deliquesce relative humidity

Composition-dependence of CRH and DRH

Polynomials of X *Martin et al.*, 2003

An example:

aqueous particles with X = 0.9 (CRH(x)=32%) at RH = 85%

- 1) Decreasing RH to 70%, all aqueous
- 2) Decreasing RH to 32%, all solid particles (LET&AS).
- 3) Increasing RH to 70%, mixed phase (aqueous LET and solid AS)

Importance of Sulfate Physical State

- Microphysical importance
 - Particular Matter (PM) Air quality (particle size and mass)
 - Heterogeneous chemistry (hydrolysis of N₂O₅)
 - Cloud formation (ice/water CCN)
- Radiative importance
 - Aerosol refractive index and size
 - Sulfate direct climate forcing (SDCF)
 - Visibility

Previous Studies on Sulfate Phase Transition

CTM:

- 1) No phase, only SO₄ mixing ratio
- 2) Diagnosis phase based on local X and RH, with assumed RH history.
- 3) track RH history using Lagrangian model, and diagnosis the phase.

Radiative calculation:

- 1) CRH and DRH equal to a RH threshold to remove bifurcation.
- 2) Other parameterization methods

An example

Fig. 1. The growth factor for ammonium sulfate aerosol as a function of relative humidity for the linear, ascending, and descending relative humidity schemes described in the text.

Haywood et al., 1997 with modification

Uncertainty Envelope from Previous Studies

Assuming CRH and DRH of AS for all sulfate particles

Aerosol type	Levels	Relative humidity parameterization	Cloud scheme	NH W m ⁻²	SH W m ⁻²	Global W m ⁻²	Global change %
$(NH_4)_2SO_4$	7	linear	UM	-0.60	-0.15	-0.38	0
$(NH_4)_2SO_4$	7	linear	cloud mask	-0.59	-0.14	-0.36	-5
$(NH_4)_2SO_4$	5	linear	UM	-0.67	-0.17	-0.42	+11
$(NH_4)_2SO_4$	10	linear	UM	-0.57	-0.14	-0.36	-5
$(NH_4)_2SO_4$	7	dry	UM	-0.38	-0.09	-0.24	-37
$(NH_4)_2SO_4$	7	descending	UM	-0.63	-0.16	-0.39	+3
$(NH_4)_2SO_4$	7	ascending	UM	-0.54	-0.14	-0.34	-11
H_2SO_4	7	d'Almeida et al. (1991)	UM	-0.66	-0.17	-0.41	+8

Haywood et al., 1997

Using CRH and DRH from aerosol thermodynamical model.

(F_L and F_U , respectively, in W m⁻²) are calculated. Including both anthropogenic and natural emissions, we obtain global annual averages of F_L = -0.750, F_U = -0.930, and

 $\Delta F_{U,L}$ =24% for full sky calculations without clouds and F_L = -0.485, F_U = -0.605, and $\Delta F_{U,L}$ =25% when clouds are included. Regionally, $\Delta F_{U,L}$ =48% over the USA, 55%

Martin et al, 2004.

Questions

- 1) Mass percentage of solid sulfate?
- 2) Contribution of solids to sulfate direct climate forcing (DCF)?

A systematic bias or error (not \pm random uncertainty)!

Approach

- 1) A box model approach
- 2) GEOS-CHEM investigation

Box Model Estimate

Under thin-layer approximation (Wiscombe and Grams, 1976):

$$SDCF = -A (\omega_{sd} \overline{\beta}_{sd} \tau_{sd} + \omega_{aq} \overline{\beta}_{aq} \tau_{aq})$$
Solid Aqueous

$$A = -\frac{1}{2}S_0T(1 - A_c)(1 - R_s)^2$$

S₀: solar constant

A_c. cloud fraction

R_s: surface reflectance

T: atmos. transmittance

Climate System parameters

 ω : single scattering abledo (= 1)

 $\overline{\beta}$: time-averaged backscattering fraction

τ: aerosol optical thickness

Forcing Agent parameters

Importance of Solids on Forcing Estimate

Aerosol term:
$$\overline{\beta}_{sd} \tau_{sd} + \overline{\beta}_{aq} \tau_{aq}$$

= $\overline{\beta}_{sd} B_{sd} E_{sd} + \overline{\beta}_{aq} B_{aq} E_{aq}$

Where

E: mass extinction efficiency m² (gSO4²⁻)⁻¹

B: sulfate burden (gSO4²⁻) m⁻²

B_{sd}/B_{aq} is unknown, previous studies use:

$$= \overrightarrow{\beta} E B$$

$$= \overrightarrow{\beta} E_{sd} G_{\tau} B$$

where
$$\vec{\beta} \to \frac{-\vec{\beta}_{sd} + \vec{\beta}_{sd} + \vec{\beta}_{aq} + \vec{\beta}_{aq} + \vec{\beta}_{aq}}{B}$$

$$B = B_{sd} + B_{aq}$$

Where

$$G_{\tau} = G_E - \frac{B_{sd}}{B} (G_E - 1)$$

$$G_E = \frac{E_{aq}}{E_{sd}}$$

Previous common assumption:

$$\boldsymbol{G}_{\tau} = \boldsymbol{G}_{E}$$

$$\overline{\beta}' = \overline{\beta}_{sd}$$
 or $\overline{\beta}' = \overline{\beta}_{aq}$

 G_{τ} : Optical thickness growth factor

G_{E:} Mass extinction efficiency growth factor

$\overline{\beta}$: time-averaged backscattering fraction

sulfate physical state impact on scattering properties

For aqueous particles, as RH increases,

r increases,
Q (extinction efficiency)
and E increase

However, β decreases

Overall, increase the aerosol forcing.

Impact of Chemical Composition

$$\overline{eta}_{aq} \,\, au_{aq}$$

20% difference due to Δ composition

$$\overline{eta}_{sd}$$
 au_{sd}

30% difference due to Δcomposition

Sulfate AOT and forcing for variable B_{sd}/B

The optical properties for aqueous particles at RH=80% is used. Climate system parameters are same as Charlson et al (1992)

GEOS-CHEM Investigation

- 1) Seasonal and geographical distribution of B_{sd}
- 2) Percentage of solid particle contribution to the global full-sky anthropogenic forcing
- 3) Forcing difference in the following 4 cases, basecase, CRH = 0, CRH=DRH, and DRH=CRH.
- 4) Where and how much would be largest forcing difference caused by the sulfate phase transition (regional perspective).

Model development

- Based upon Park et al (2004), with the following modification:
 - No nitrate. H₂SO₄-H₂O system only.
 - Sulfate mass are transported in 4 species: solid AS, LET, and AHS particles, aqueous SO₄.
 - CRH (X) and DRH of solids from Martin et al., 2003.
 - The concentration of each sulfate species are calculated according to the CRH(X), X, ambient RH, and DRH values.
- Because we explicitly track the solid and aqueous phase at each time step and model grid, the RH history on sulfate phase is retained.

Emissions: ~80% are anthropogenic

Following Park et al (2004), we consider biomass burning as natural emission.

Seasonal SO₄²- burden and AOT in base case

Clear-sky and full-sky SDRE (natural + anthro.)

Covariance matters. Cloud distribution favors the forcing of solids.

SDRF (~70% of **SDRE**)

Forcing difference is over the Sahel region.

Effect of particle state on SDCF

Quantitative Summary of SDRE

	Basecase	CRH=0	CRH=DRH	DRH=CRH
B (mg SO4 m ⁻²)				
Total	2.601	2.591	2.609	2.590
% due to solids	27.0%	0.0%	48.3%	12.7%
τ at 0.55μm (*10000)				
Total	240	253	217	247
% due to solids	15.4%	0.0%	30.0%	6.9%
SDRE _{cld} (wm ⁻²)				
Total	0.356	0.371	0.332	0.363
% due to solids	24.4%	0.0%	44.0%	11.8%
% to Basecase				
τ	100%	105.4%	90.4%	102.9%
SDRE _{cld}	100%	105.1%	93.0%	101.9%

Quantitative Summary of SDCF

	basecase	CRH=0	CRH=DRH	DRH=CRH
B (mg SO4 m ⁻²)				
Total	1.859	1.849	1.866	1.851
Solids %	28.1%	0%	52.4%	13.0%
τ at 0.55μm (*10000)				
Total	166	175	136	171
Solids %	16.9%	0%	36.8%	7.0%
SDCF (wm ⁻²)				
Total	0.254	0.266	0.240	0.259
Solids %	25.6%	0%	47.5%	12.0%
Compared to base case				
τ % to basecase	100%	105.4%	81.9%	103.0%
SDCF _{cld} %	100%	104.7%	94.5%	102.0%

Discussion

Solid Ammonium Sulfate Aerosols as Ice Nuclei: A Pathway for Cirrus Cloud Formation

J. P. D. Abbatt, 1* S. Benz, 2 D. J. Cziczo, 3 Z. Kanji, 1 U. Lohmann, 3 O. Möhler 2

science, 2006

Sulfate phase impact on cirrus formation

Regions where phase transition has the largest impact. $\Delta M_{sd}/M$

Places having important phase transition all show larger cirrus cloud fraction.

The reverse is not necessarily true, because there are other factors

Cirrus cloud fraction from MODIS

Summary

- Simulation of sulfate phase in H₂SO₄-H₂O system is developed. Inclusion of nitrate and organic aerosols is on the way.
- SDCF $_{\rm CRH=0}$ is about 4% larger than SDCF $_{\rm basecase}$, SDCF $_{\rm CRH=DRH}$ is 6% smaller than SDCF $_{\rm basecase}$.
- The percentage might vary if the model doesn't resolve the sulfate chemical composition, and hence hygroscopicity.
- Phase transition impact on SDCF has the important seasonal and regional variations, with larger effect (>20%) over south America, south Africa, east Asia, Europe and U.S. during summer time.
- The simulation results have important implications for understanding cirrus cloud formation.

Acknowledgement

- NASA Atmospheric Composition Modeling and Analysis Program.
- NSF
- NOAA Climate and Global Change postdoctoral fellowship program under the administration of UCAR.

Assume same size distribution of dry particles, as RH changes from 0% to 80%, E increases by a factor of 2.7! For the same RH, chemical composition results in variation of E within 20%.

	RH=0				
	m _r	density (gcm ⁻³)	r _{eff} (µm)	E m ² (g dry particle) ⁻¹	E m ² (gSO ₄ ²⁻)-1
AS	1.53	1.76	0.17	3.85	5.31
AHS	1.47	1.78	0.17	3.29	3.95
LET	1.51	1.83	0.17	3.53	4.55
SA	1.84	1.84	0.17	3.42	3.48
Water	1.33	1.00			

 $3.52\pm0.24, \pm 7\%$ $4.32\pm0.79, \pm 18\%$

	RH=80%				
AS	1.41	1.30	0.24	9.62	13.28
AHS	1.38	1.30	0.25	9.84	11.81
LET	1.40	1.32	0.25	9.85	12.71
SA	1.37	1.24	0.30	15.49	15.80

 $11.2\pm2.86, \pm26\%$

 $13.4\pm1.7, \pm13\%$

In GOES-CHEM, E ~ 11.5, assume rg=0.05, this study 0.07

Literature 8.0 - 16.0